
www.manaraa.com

Dynamic Tables: An Architecture for Managing Evolving,

Heterogeneous Data in Relational Database Management Systems

John Corwin∗, Perry Miller†, Avi Silberschatz∗, Luis Marenco†

March 29, 2006

Abstract

Data sparsity and schema evolution issues affecting bioinformatics and medical informat-
ics communities have forced the adoption of vertical or object-attribute-value based database
schemas to overcome limitations posed when using conventional relational database technology.
Through our collaboration with the Yale Center for Medial Informatics (YCMI), we explore
the reasons for this and show why their data is difficult to model using conventional relational
techniques. We propose a solution to these obstacles based on a relational database engine
using a sparse, column-store architecture. We provide benchmarks comparing the performance
of queries and schema-modification operations using three different strategies: (1) the standard
conventional relational design, (2) past approaches used by clinical and neuroinformatics re-
searchers, and (3) our sparse, column-store architecture. Our performance results show that our
architecture is a promising technique for storing and processing many types of data that were
not handled well by conventional nor other derived semantic data models.

1 Introduction

The Yale Center for Medical Informatics (YCMI) is focused on the use of computing to benefit the
fields of clinical medicine, neuroscience, and molecular biology. As part of these efforts, they have
created databases that store and integrate diverse types of heterogeneous data, including models
and properties of neurons and subcellular components, clinical patient data, genomic sequence,
gene expression, and protein expression data, and the results of many different neuroscience experi-
ments. These databases have properties that make them difficult to implement and maintain using
conventional relational databases that rely on horizontal data storage, including the use of sparse
and heterogeneous data, the high frequency of schema changes, and the extensive use of metadata.

The databases in question are TrialDB[10], which stores clinical patient data, and SenseLab[15],
which stores an extensive set of information related to neurons and neuronal properties. TrialDB
and SenseLab are implemented using the semantic data models known as EAV[11] and EAV/CR[13],
respectively, which make use of vertical storage to store data values, plus an extensive set of
metadata to allow generalized tools to be developed to query and maintain the data. Unfortunately,
these tools must also re-implement features commonly taken for granted in a database engine,
including typical methods of querying the logical schema of the data. Furthermore, the use of
vertical storage can cause performance problems, particularly with attribute-centered queries[12].

1Department of Computer Science, Yale University, New Haven, CT
2Yale Center for Medical Informatics, Yale University, New Haven, CT

1



www.manaraa.com

To alleviate some of the limitations imposed by vertical schemas, we propose a database system
based on the use of sparse, column-based storage, which we call dynamic tables. The use of a column
store, also known as decomposed storage, was first proposed by Copeland and Khoshafian[3][4],
and is also used by the Sybase IQ[8] database engine. Our use of decomposed storage is to replace
vertical schema at the level of the database engine itself, enabling the key advantages of vertical
storage while maintaining the clarity and maintainability of querying a horizontal schema. Our
storage implementation presents a standard horizontal view of the data to the database user, and
was designed as an addition to – not a replacement of – the database engine’s storage architecture,
so dynamic tables can be flexibly and transparently mixed with standard horizontally-stored tables
in queries.

The remainder of the paper is structured as follows. Section 2 describes the databases we’re
working with, the data model they’re represented with, the tools developed to query them, and mo-
tivation for our architecture. In section 3, we present our architecture, describe it’s implementation,
and discuss the optimizations we employ to improve query performance. Section 4 contains per-
formance results comparing the performance of queries and schema modifications using horizontal
schema, vertical schema, and our decomposed schema. Section 5 talks about other implementation
strategies we tried, section 6 discusses related work, and we conclude in section 7.

2 Background

The SenseLab project contains neuroinformatics databases created to support both theoretical and
experimental research on neuronal models, membrane properties, and nerve cells using the olfactory
pathway as a model. SenseLab is part of the national Human Brain Project which seeks to improve
our understanding of brain function.

TrialDB is a clinical study data management system (CSDMS) created at Yale and that contains
information on clinical trials from several organizations. TrialDB relies on the Entity-Attribute-
Value (EAV) semantic data model, a type of vertical schema in which attributes are divided into
tables based on type – there is a vertical table for string-valued attributes, another for floating-
point-valued attributes, and so on. Attributes are stored as integers for space-efficiency, and some
EAV tables have a fourth column with a time-stamp value to support versioning. Metadata tables
are used to catalog which entities possess which attributes, as well as to provide a mapping between
attribute numbers and names. Trial/DB is stored using the EAV model.

In clinical trials, like in electronic medical records systems, a given patient-event requires only
a few from a possible myriad of attributes. These attributes also trend to change as new medical
procedures are introduced and others retired. Storing patient-event data using straight relational
tables and columns for attributes produce sparse tables and increased schema change overhead.

Neuroscience is a discipline highly characterized by constant evolution: Hypothesis can change
in the course of an investigation and knowledge bases are difficult to maintain due to unstable
conceptualization of the domain. Due to these issues, experimental databases are expensive to
maintain or become obsolete. But neuroscience data is far more complex that patient data, requiring
more than one type of entity, and relationships between them. For this reason, EAV/CR was created
by extending the EAV model with classes and relationships. In this context, classes mean that the
values stored in the EAV table are no longer required to be simple values but instead can be complex
objects. The addition of relationships allow data values to reference other entities in the database,
representing relationships amongst data items. SenseLab is stored using the EAV/CR model.

2



www.manaraa.com

Horizontal query:

SELECT o id, o name, chromosome, nucleotides
FROM ordb chemosensory receptors
WHERE length=1363 and cr type=1443

Vertical query:

SELECT OS.object id, OS.object name, V32.value, V40.value
FROM (

SELECT senselab objects.object id, senselab objects.object name
FROM (senselab objects INNER JOIN senselab eav objects ON

senselab objects.object id = senselab eav objects.object id)
INNER JOIN senselab eav objects AS senselab eav objects 1 ON

senselab objects.object id = senselab eav objects 1.object id
WHERE senselab objects.object class =22

AND senselab eav objects.attribute id = 39
AND senselab eav objects.value = 1363
AND senselab eav objects 1.attribute id=80
AND senselab eav objects 1.value=1443)

AS OS

LEFT JOIN (SELECT object id, value
FROM senselab eav int
WHERE attribute id=32) AS V32 ON
OS.object id = V32.object id

LEFT JOIN (SELECT object id, value
FROM senselab eav memo
WHERE attribute id=40) AS V40 ON
OS.object id = V40.object id

Figure 1: A typical query in the SenseLab database expressed using horizontal and vertical data
representations.

In addition to the data models described above, YCMI has created a set of tools to query and
manage data stored in the EAV and EAV/CR models. But their use of these semantic data models
has come with a cost: a) The limited number of tables increases the number of tuples translating in
longer query execution time, particularly for multi-attribute queries; b) Vertical systems have the
potential of reducing the capacity of data stored on each of the attributes tables to the maximum
number of rows in a single table; and c) Ad hoc queries’ creation becomes more complex, as they
have to be devised using a virtual schema but translated into the physical vertical schema.

The inability to execute standard ad-hoc relational queries against an EAV or EAV/CR database’s
logical schema is particularly troublesome – queries that are relatively simple to express in a hor-
izontal schema become significantly more complex in a vertical schema. Consider the example in
figure 1. Part of the complexity comes from the fact that when querying multiple attributes in
a vertical schema, we need to join the vertical table with itself once for each desired attribute.
Another loss of clarity comes from EAV’s use of integers to identify attributes (if strings were used
instead, the string value of each attribute would have to be repeated for each value in the vertical

3



www.manaraa.com

table, adding an unacceptable amount of storage overhead).
Even if the database engine contains extensions such as PIVOT and UNPIVOT operators to simplify

the translation between vertical and horizontal schema, if the operators are implemented at a high
enough level such that the translated queries are processed by the query planner, the resulting
queries will involve a large number of joins. Most modern database engines perform poorly with
queries that contain large numbers of project-join operations[5].

In order to overcome the problems imposed by the vertical storage approach, we have devised
our dynamic table implementation discussed next.

3 Dynamic table implementation and optimizations

The design goals of our system are to support the simplicity of querying a horizontal schema and the
flexible and efficient schema manipulations of a vertical schema, all while maintaining reasonable
query performance. To achieve these goals, we have implemented a sparse, column-based storage
architecture within the PostgreSQL [6] database engine.

We first present the system from the database user’s point of view – how to create and ma-
nipulate dynamic tables. We then show how dynamic tables are implemented within the database
engine, followed by several optimizations we have employed to improve query performance.

3.1 Interface

A table’s storage format is specified at creation time by the presence of the DYNAMIC flag in the
CREATE TABLE statement in SQL:

CREATE DYNAMIC TABLE table name(
column 1 type 1,
column 2 type 2,
...
column n type n

)

The DYNAMIC keyword indicates that the table is to be created using the decomposition storage
model. From the database user’s point of view, after the table has been created, operations on
the the table are semantically indistinguishable from those on a standard, horizontally represented
table – the user queries and updates the table as if it were stored horizontally. Dynamic tables also
fully support indexes, primary and foreign-key constraints, and column constraints.

The addition of dynamic tables to the database engine does not affect the availability of regular,
horizontally-stored tables; the user is free to choose the storage format of each individual table based
on the sparsity of the data to be stored and the expected frequency of modifications to the table’s
schema. Dynamic tables can also be freely mixed with standard tables within queries.

3.2 Implementation

Let r be an n + 1-ary relation consisting of n attributes plus an object identifier. To implement
the decomposed storage of r, we create n two-column “attribute” tables, and a single one-column
“object” table. Each two-column table stores pairs of object identifiers and attribute values. Null

4



www.manaraa.com

Standard table (horizontal storage)
oid A1 A2 A3
1 a b c
2 d e
3 f
4 g

Vertical storage
Object Attribute Value

1 A1 a
1 A2 b
1 A3 c
2 A1 d
2 A2 e
3 A2 f
4 A1 g

Dynamic table (decomposed storage)

oid
1
2
3
4

oid A1
1 a
2 d
4 g

oid A2
1 b
2 e
3 f

oid A3
1 c

Figure 2: Horizontal, vertical, and decomposed storage models

5



www.manaraa.com

Update a → a′

a is NULL a is non-NULL
a’ is NULL No action Delete a

a’ is non-NULL Insert a′ Update a to a′

Figure 3: Action performed when updating attribute a to a′ on a dynamic table.

values of an attribute are not explicitly stored; their presence is inferred by the absence of an object-
attribute pair in the attribute table. The one-column table stores a list of all object identifiers
present in the relation. Finally, the correspondence between r, r’s object table, and r’s attribute
tables are stored in a system catalog. Figure 2 shows the layout of a standard table compared to
a dynamic table.

The object table was not present in Copeland and Khoshafian’s original decomposed storage
model. The addition of the object table allows us to quickly determine if a row is present in a
relation, avoiding a potential scan of each of the attribute tables. It also allows us to maintain a
single virtual location of a tuple set to the physical location of it’s object identifier in the object
table, and enables us to use a left outer join instead of a full outer join when computing query
results. Additionally, the object table was also devised to allow future versions of the dynamic
table infrastructure to provide row level security and versioning, which are present in the EAV/CR
data model.

We implemented dynamic tables at the heap-access layer of PostgreSQL, which implements
operations on individual tuples in a relation, namely inserting, updating, deleting, and retrieving
a tuple. When the database user creates a new dynamic table, we create the attribute and object
tables in a hidden system namespace, exposing only the virtual, horizontal schema given as the
table’s definition in the CREATE TABLE statement.

To retrieve a tuple for a query on r, we first scan the object table to find a qualifying object
identifier, o. If found, we use o to query each of r’s attribute tables. If the pair (o, a) is present in
an attribute table for some value a, we set the corresponding attribute in the returned tuple equal
to a. Otherwise, the tuple’s attribute value is set to NULL. To facilitate the efficient lookup of
object IDs in the attribute tables, we maintain a B-tree index on object IDs for each table.

Likewise, inserting a new tuple into r is implemented by inserting a new identifier into r’s object
table, then for each of the new tuple’s attributes, if the new attribute value is non-NULL, we insert
the new object ID and attribute value pair into r’s corresponding attribute table. For deletes, given
an object ID, we simply delete each tuple from r’s object and attribute tables. Updates are slightly
more complex in that the operation to perform is dependent on both the old and new values of
each attribute. The semantics for updating an attribute a to a′ in r are listed in figure 3.

Given the evolving nature of the data we intend to store, it is important that schema modifica-
tions on dynamic tables are implemented efficiently and that we avoid the cost of copying an entire
table whenever possible. We support the schema operations of adding and removing columns, and
changing a column’s type, in addition to trivial schema operations such as renaming a column or
renaming the entire table. We implement the non-trivial operations as follows:

• ADD COLUMN col type: To add a new column col to r, we create a new, empty attribute table
for col and update the system catalog to associate it with r.

• DROP COLUMN col: To drop a column from r, we find and drop the attribute table associated

6



www.manaraa.com

Query on schema r(a, b, c, d, e):

SELECT b
FROM r
WHERE d > 10

Figure 4: A good opportunity for projection pushing

Query on schema r(a, b, c, d, e):

SELECT *
FROM r
WHERE e = 5 AND d > 15 AND d < 25

Figure 5: A candidate for conditional select optimization

with the column and remove r’s association with the dropped attribute table from the system
catalog.

• ALTER COLUMN col TYPE type: Changing a column’s type requires us to copy and convert
the data in the column’s associated attribute table to the new type. However, this is still
significantly cheaper than copying and converting an entire horizontal schema, particularly
when the schema has a large number of attributes.

3.3 Optimizations

We employ two main optimizations to improve the performance of queries on dynamic tables:
projection pushing and optimizing conditional selects. The use of decomposed storage gives us
additional opportunities for projection pushing in comparison to a standard horizontal schema.
Consider the query listed in figure 4. If r is stored using decomposed storage, there is no reason to
retrieve values from r’s attribute tables for a, c, or e. For the general case, we compute the set of
attributes we’re required to fetch by taking the union of the attributes present in the target list of
the SELECT clause with the attributes present in the WHERE clause of a query.

Next, consider the query listed in figure 5. We can’t use projection pushing here because
all r’s attributes are requested via “SELECT *”. However, when scanning r to find tuples that
match the query condition, it would make sense to retrieve and test the values of attributes d
and e against the condition, discarding the candidate tuple if the test fails before retrieving r’s
remaining attributes. To implement this optimization in the general case, we divide the requested
attributes from a query into two groups: those with conditions and those without conditions. When
retrieving attributes, we first retrieve attributes with conditions, one at a time. If the attribute
does not satisfy the condition, we immediately discard the tuple, skipping the remaining attributes.
If all of the conditions are satisfied, we read the remaining attributes and return the tuple to the
query executor.

In both of these cases, these attribute-level I/O operations are not beneficial when using a stan-
dard horizontal schema because tuples are generally stored contiguously and packed into blocks,
and sub-block I/O does not improve tuple throughput. However, with decomposed storage, at-
tributes of each column are grouped together into blocks, giving us the opportunity to skip reading

7



www.manaraa.com

blocks for attributes we have determined that we don’t need. Of course, the other side of the story
is that if we do end up needing all the attributes of a tuple, a horizontal schema that allows us
to fetch the entire tuple at once will be more efficient, so the optimal choice of storage format is
dependent on both the sparsity of the data being stored and the types of queries that will be run
against the data.

4 Performance results

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Query
execution
time (ms)

Number of attributes

Horizontal storage
3

3

3 3 3

3
Dynamic tables+

+

+ + +

+
EAV/CR storage2

2
2

2

2

2

Figure 6: Comparison of query execution time for an attribute-centered query on SenseLab data
without indexes.

To evaluate the performance of our implementation, we compared the performance of dynamic
tables to both standard, horizontal storage and to storage using the EAV and EAV/CR vertical
models. We test this using a typical series of queries executed by users of the SenseLab databases
that retrieve a set of neurons plus several of their attributes, filtering on between one and five
attributes to narrow the number of results. These queries have a similar structure to the queries
shown in figure 1.

After each database was populated, the ANALYZE command was run to update the statistics
used by the query planner. All tests were run on a 1.8Ghz Intel Pentium IV machine with 1GB of
RAM running Fedora Core Linux version 4.01.

Figure 6 shows the results of running each query using each of the three storage models. No
indexes were used on the data items, representing the case where we do not know beforehand which
attributes will be of interest to the database users. The number of attributes in this case refers to
the number of values that are filtered on in the WHERE clause of the query.

When we do know which attributes will commonly be queried on, we can create indexes on them
to improve performance – this is the usual case for SenseLab data. Figure 7 shows the running
time for each of the queries with indexes. Notice that the use of indexes virtually eliminates

8



www.manaraa.com

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Query
execution
time (ms)

Number of attributes

Horizontal storage

3

3

3 3 3

3
Dynamic tables+

+

+ + +

+
EAV/CR storage2

2
2

2

2

2

Figure 7: Comparison of query execution time for an attribute-centered query on SenseLab data
with indexes on queried attributes.

the performance difference between horizontal storage and dynamic tables, whereas the vertical
approach does not benefit as much from using indexes.

Unlike many other relational database engines, PostgreSQL already has support for the efficient
implementation of some schema modification commands. In particular, most cases of adding or
removing a column from a table are executed lazily – the storage format of the table is not actually
modified until the table is later compacted using the VACUUM command. Thus, in our implementa-
tion, adding a column to a table is a trivial operation using any of the three storage formats, as
they only involve updating the system catalog (the metadata catalog in the case of EAV/CR), and
are independent of the data currently stored in the table.

However, some schema modification operations do require the data in a table to be modified,
including altering a column’s type and adding a new column with a default value. To implement
altering a column’s type using horizontal schema, the entire table is copied, converting the data
values for the modified column to the new type as they are copied. For dynamic tables, we only have
to convert the single attribute table corresponding to the modified column. For tables stored using
EAV or EAV/CR, we need to move the data values from the object-attribute-value table for the
old type to the object-attribute-value table for the new type. Figure 9 shows the SQL statements
used to change the data type of a column representing the year of publication of a paper from a
string value to an integer, and figure 10 shows the execution time for these queries. Dynamic tables
are significantly faster than the other approaches for this operation.

We also ran a set of queries on the TrialDB data to compare the performance of each storage
model on a large, sparse dataset. Since the TrialDB data contains millions of records, querying the
dataset without the use of indexes is too slow to be useful using any of the storage methods. Figure
8 shows the results of running a set of typical attribute-centered queries with indexes on each of
the attributes in question. The results are similar to the queries on SenseLab.

9



www.manaraa.com

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Query
execution
time (ms)

Number of attributes

Horizontal storage

3 3 3 3 3

3
Dynamic tables

+ + + + +

+
EAV storage

2 2

2
2

2

2

Figure 8: Comparison of query execution time for an attribute-centered query on TrialDB data
with indexes on queried attributes.

Sample clinical data from TrialDB used in this project was properly deidentified following
HIPAA[16] regulations by removing all patient demographics data, scrambling integer and string
data values, and replacing all internal system id’s (e.g.: patient event ids) with local sequential
ones.

5 Other implementation strategies

The implementation strategy given above is actually our third implementation of an alternate
relational storage architecture. Our first two approaches did not work out, but we believe the ideas
may have merit if implemented in other database systems.

Our first approach was to use a dense column-store. In this architecture, a relation’s attribute
values are densely packed into one-column tables. Tuples from the conceptual schema are returned
by joining values from the attribute tables based on their index in the table: to retrieve the ith
tuple from relation r, we simply take the ith entry from the first attribute table, the ith entry
from the second attribute table, and so on. This approach still allows for the efficient schema
modifications described above, and provides greater storage efficiency for dense data. However,
we realized that this approach is incompatible with PostgreSQL’s use of multi-version concurrency
control (MVCC). Using MVCC, PostgreSQL eliminates the need to hold locks on tables by storing
multiple versions of tuples representing consistent snapshots of the data at different points in time,
along with tuples that have been made obsolete by newer versions. When implementing the single-
column store approach, even if we are careful to ensure that values from a tuple are inserted into
the same logical position in each of the attribute tables, it is very difficult to ensure that values
will remain in the correct logical order after a table compaction (VACUUM) operation.

Our second approach was to use sparse columns to store attributes, but to implement the

10



www.manaraa.com

Horizontal and dynamic tables:

ALTER TABLE modeldb model paper 42
ALTER COLUMN year TYPE int
USING cast(year as int)

EAV/CR data model:

INSERT INTO senselab eav int
SELECT object id, attribute id,

cast(value as int)
FROM senselab eav string
WHERE senselab eav string.attribute id = 154

UPDATE senselab attributes
SET datatype = ’I’
WHERE attribute id = 154

DELETE FROM senselab eav string
WHERE senselab eav string.attribute id = 154

Figure 9: SQL queries to alter the type of a column representing the year of publication of a paper
from a string value to an integer value.

Horizontal Dynamic Vertical
Execution 501 297 4650
time (ms)

Figure 10: Execution time for the alter column type queries given in figure 9 for each of the three
data storage formats.

11



www.manaraa.com

translation from the decomposed storage model to the horizontal storage model at the level of
rewrite rules in the database engine. Our hypothesis was that rewrite rules would give the query
planner maximal opportunity to optimize query plans involving dynamic tables. We found, however,
that PostgreSQL’s query optimizer tried too hard to find the optimal join order when combining
attribute tables, taking exponential time relative to the number of joins to plan the query. The
generated query plans were efficient, but for tables with large numbers of columns, query planning
took several orders of magnitude longer than actually executing the query. Constraining the join
order decreased planning time, at the expense of potentially worse query plans. In the end, we found
it was more efficient to implement decomposed storage at the heap-access level of the database,
bypassing the query planner entirely.

6 Related work

Beckmann et al.[1] propose an alternate storage format for tables on disk in which the tuple layout
of each row is described by a variable-length, “interpreted” record. The interpreted records are
implemented at a lower level in the database engine compared to dynamic tables (storage level vs.
heap-access level), and provide many of the same benefits for storing sparse or heterogeneous data
with potentially greater space-efficiency. It is not clear, however, that interpreted records provide
any benefit to the optimization of schema-modifying operations.

The C-Store[2] database engine is also based on a column-store architecture, but is designed
for the application of read optimized databases, and thus may not be appropriate for typical
neuroscience databases where writes are frequent.

The work of Agrawal, et al.[9] on e-commerce data shows that the domain of e-commerce data
shares many similarities with neuroscience and clinical informatics data, particularly with respect
to schema evolution and heterogeneous data. They, however, advocate the use of vertical storage
and show a performance advantage for vertical schema compared to horizontal schema for this
domain.

7 Conclusion and future work

This paper presents the architecture of dynamic tables, which are based on implementing relational
database storage using the decomposed storage model while maintaining a logical horizontal view
of the data. Our implementation has significant advantages over past approaches used by the
bioinformatics and medical informatics communities that were based on the use of vertical storage,
including improved query performance on attribute-centered queries, improved schema modification
performance, and the greater manageability of working with a horizontal view of the data. Dynamic
tables also maintain the capability of vertical schemas to efficiently store sparse data.

Our future work will continue our effort increasing the capabilities of database engines by
adding features commonly needed by bioscience and clinical databases, including extensive support
for metadata and a flexible system for row-level security.

12



www.manaraa.com

8 References

References

[1] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F. Naughton. Extending RDBMSs
To Support Sparse Datasets Using An Interpreted Attribute Storage Format. In ICDE, 2006.

[2] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S.
Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran and S. Zdonik. C-Store: A Column Oriented
DBMS. In Proceedings of VLDB, August, 2005, Trondheim, Norway.

[3] G.P. Copeland and S. Khoshafian. A decomposition storage model. In Proceedings of the 1985
ACM SIGMOD International Conference on Management of Data, Austin, Texas, May 28 -
31, 1985, pages 268 - 279.

[4] S. Khoshafian, G.P. Copeland, T. Jagodis, H. Boral, and P. Valduriez. A query processing
strategy for the decomposed storage model. In ICDE, 1987, pages 636 - 643.

[5] Benjamin J. McMahan and Guoqiang Pan and Patrick Porter and Moshe Y. Vardi. Projection
Pushing Revisited. In EDBT 2004.

[6] PostgreSQL. PostgreSQL Global Development Group. http://www.postgresql.org/

[7] Jacob Anhoj. Generic Design of Web-Based Clinical Databases. Journal of Medical Internet
Research, Volume 5, Issue 4, Article e27.

[8] Sybase IQ: Query Search Test Software And Operational Data Store Warehouse Application.
Sybase Inc. http://www.sybase.com/products/ informationmanagement/sybaseiq

[9] R. Agrawal, A. Somani, Y. Xu. Storage and Querying of E-Commerce Data. In VLDB, pages
149 - 158, 2001.

[10] P. Nadkarni, C. Brandt, S. Frawley, F. Sayward, R. Einbinder, D. Zelterman, et al. Managing
attribute-value clinical trials data using the ACT/DB client-server database system. Journal
of the American Medical Informatics Association, 1998; 5(2):139-151.

[11] P. Nadkarni, C. Brandt. Data Extraction and Ad Hoc Query of an Entity-Attribute-Value
Database. Journal of the American Medical Informatics Association, 1998;5:511-527.

[12] R. Chen, P. Nadkarni, L. Marenco, F. Levin, J. Erdos, P. Miller. Exploring Performance Issues
for a Clinical Database Organized Using an Entity-Attribute-Value Representation. Journal
of the American Medical Informatics Association, 2000;7:472-487.

[13] L. Marenco, P. Nadkarni, E. Skoufos, G. Shepherd, P. Miller. Neuronal database integration:
the Senselab EAV data model. In Proceedings of the AMIA Symposium; 1999. 1999. p. 102-106.

[14] C. Friedman, G. Hripcsak, S. Johnson, J. Cimino, P. Clayton. A Generalized Relational Schema
for an Integrated Clinical Patient Database. In Proc. 14th Symposium on Computer Applica-
tions in Medical Care; 1990; Washington, D.C.: IEEE Computer Press, Los Alamitos, CA;
1990. p. 335-339.

13



www.manaraa.com

[15] P. Miller, P. Nadkarni, M. Singer, L. Marenco, M. Hines, G. Shepherd. Integration of Multi-
disciplinary Sensory Data: A Pilot Model of the Human Brain Project Approach. Journal of
the American Medical Informatics Association, 2001;8:34-48.

[16] (HIPAA) US Office for Civil Rights. Medical Privacy: National standards to protect the
privacy of personal health information. 2002 [cited 2006 Mar 15, 2006]; Available from:
http://www.hhs.gov/ocr/hipaa/.

14


